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Linear Recurrences

 A recurrence relation is a function that defines a 
sequence recursively.
 F

n
 = F

n-1
 + F

n-2
(Fibonacci recurrence)

 x
n
 = r.x

n-1
(1 – x

n-1
) (Logistic map)

 A linear recurrence simply consists of a linear 
combination of some number of preceding 
terms.


T n = a⋅v where  a  is a vector of coefficients

and  v  is a vector such that  vi = T n−k  for some  k ∈ ℕ
*



  

Linear Recurrences

 How do we solve linear recurrences efficiently?

 For example take the Fibonacci numbers:
 F

n
 = F

n-1
 + F

n-2

 F
1
 = F

2
 = 1

 How do we compute F
1000 000 000

?

 DP? Too slow.
 We can do much better using matrices.



  

Matrices

 What is a matrix?
 A matrix is simply a block of numbers that can be 

added, subtracted and multiplied as if it were a 
number in its own right.

 They come in different sizes; an m⨯n matrix has m 
rows and n columns.

 If m = n, it is square matrix.
 A matrix with only 1 row is called a row vector and 

one with only 1 column is called a column vector.



  

Matrices

 1 7
−3 1/2

−1 75 15
0 6 −57


6 −79

3/4 6
−3 37 


1 0 0 0
0 6 0 0
0 0 11 0
0 0 0 16



5 −4 8 17 2x2 square matrix

3x2 matrix 1x4 row vector

4x4 square matrix

2x3 matrix



  

Matrices

 The matrix analogue of zero is the zero matrix 
and the analogue of one is the identity matrix.


0 0 0
0 0 0
0 0 0
0 0 0

 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


4x3 zero matrix 5x5 identity matrix



  

Matrices

 When adding or subtracting matrices you 
simply add or subtract their individual terms.

 Matrix multiplication however is a bit trickier and 
it forms the basis of this talk.



  

Matrix Multiplication

 Matrices may only be multiplied if the number of 
columns in the first is equal to the number of 
rows in the second. The result has the same 
number rows as the first and the same number 
of columns as the second.

m×n⋅n× p = m×p



  

Matrix Multiplication

 If two matrices are multiplied each element in 
the resulting matrix is the dot product of the 
corresponding row in the first matrix and the 
corresponding column in the second matrix.

AB



  

Matrix Multiplication

 Matrix multiplication is not commutative, but it is 
associative and it distributes over matrix 
addition.

A B≠B A

A BC=ABC 

ABC=A BAC

ABC=A CBC



  

Matrix Multiplication

1 2 3
4 5 6

7
8
9= 1×72×83×9

4×75×86×9= 50
122


7
8
91 2 3

4 5 6  is undefined

1 2
3 43 2

1 0= 1×32×1 1×22×0
3×34×1 3×24×0= 5 2

13 6
3 2
1 01 2

3 4= 3×12×3 3×22×4
1×10×3 1×20×4= 9 14

1 2 



  

Matrix Multiplication
// O(n3) matrix multiplication algorithm
Matrix multiply( Matrix a, Matrix b ) {

assert( a.columns == b.rows );

// c is initially filled with zeros
Matrix c( a.rows, b.columns );

for( int k = 0; k < a.columns; k ++ ) {

for( int i = 0; i < a.rows; i ++ ) {

for( int j = 0; j < b.columns; j ++ ) {

c[i][j] += a[i][k]*b[k][j];
}

}
}

return c;
}



  

Recurrences in terms of Matrices

 Write down the equation

 What information is used?

 What do we want and what will be used next 
iteration?

Fn=F n−1Fn−2

Fn−1

Fn−2


 F n

Fn−1




  

Recurrences in terms of Matrices

 What matrix A do you need to multiply the first 
column vector by to get the second one?

 F n

Fn−1
= AF n−1

Fn−2


 F n

F n−1
= a b

c d F n−1

F n−2
 F n=a⋅F n−1b⋅F n−2

F n−1=c⋅F n−1d⋅F n−2



  

Recurrences in terms of Matrices

 What matrix A do you need to multiply the first 
column vector by to get the second one?

 Given

Fn=F n−1F n−2

 F n

Fn−1
= AF n−1

Fn−2


 F n

Fn−1
= 1 1

1 0F n−1

F n−2
 Fn=1⋅Fn−11⋅Fn−2

Fn−1=1⋅Fn−10⋅Fn−2



  

Recurrences in terms of Matrices

Because matrix multiplication is associative, if we 
want the 6th Fibonacci number we can say

 Now we can simply power the matrix!

F6

F5
= 1 1

1 01 1
1 01 1

1 01 1
1 0F2

F1


F6

F5
= 1 1

1 0
4

F 2

F1


F6

F5
= 1 1

1 0
4

11



  

Recurrences in terms of Matrices

 This can be made very fast with the fast 
exponentiation algorithm from Michel's lecture 
modified to work for matrices.

 But you don't even have to write the code, just 
implement a matrix class with an overloaded 
multiplication operator and call 
__gnu_cxx::power from <ext/numeric>.

 This runs in    where n is the power and 
m is the size of the matrix. Here m is a constant 
so it runs in    !

m3 log n

 log n



  

A more complicated example

 Find the nth term of the following series (given c):

 Phrase it as a recurrence:

 Used info

xn=∑
i=1

n

i⋅ci−1 = 12c3c2...ncn−1

xi = xi−1 i ci−1

 x i−1

ici−1



  

A more complicated example

 Equation

 But ic i -1 cannot be maintained, so an extra 
variable must be added.

 x i

i1ci= 1 1
? ? x i−1

ici−1 xi = 1⋅xi−1 1⋅i ci−1

i1ci = ?⋅xi−1?⋅i ci−1


x i

i1ci

ci = A
x i−1

ici−1

ci−1 

 x i

i1ci= A x i−1

ici−1

Added c i-1



  

A more complicated example

 Now solving is easy


x i

i1ci

ci = 
1 1 0
0 c c
0 0 c 

x i−1

ici−1

ci−1 


xn

n1cn

cn = 
1 1 0
0 c c
0 0 c 

n


0
1
1 

x i=1⋅xi−11⋅i ci−10⋅ci−1

i1ci
=0⋅x i−1c⋅i ci−1

c⋅ci−1

ci=0⋅x i−10⋅i ci−1c⋅ci−1

x0=0

01c0=1
c0=1



  

Notable Mentions

 If A is the adjacency matrix of a graph. Then 
the element (i,j) of An is the number of distinct 
paths of length n from i to j.

 The number of paths up to length n can be 
found by summing the matrices from A0 to An. 
The matrix geometric sum formula can be use 
to compute this efficiently.

Sn = An1− I A−I −1 where  I  is the identity matrix



  

Example – Google code jam

 The question is simple: find the last 3 digits 
before the decimal point of   . For 
 Google code jam, Round 1A, Question C

 For example,    , so you 
output 935.

35
n

n ∈ ℕ

35
5
= 3935.73982 ...



  

Example – Google code jam

 The answer is less simple.
 Doing floating point operations loses accuracy 

so you get the wrong answer.
 We can only use integers in our algorithm.



  

Example – Google code jam

 If we represent  as
(which is always possible), we can get the 
following recurrence:

 Written as a matrix

35
n anbn5 ;  a , b ∈ ℤ

an = 3an−15 bn−1

bn = an−13bn−1

an

bn
=3 5

1 3an−1

bn−1




  

Example – Google code jam

 If you need to turn a surd into an integer you 
usually perform some operation with its 
conjugate.

 The conjugate surd of   is   .35 3−5



  

Example – Google code jam

 The key observation is as follows.


 Because   is less than 1, for positive n,  
will also be less than 1.

 As we will show, x
n
 will always be an integer.

 Therefore    , which is one more than 
our desired answer.

let  x n = 35
n
3−5

n

3−5 3−5
n

x n = ⌈35
n
⌉



  

Example – Google code jam

x n =∑
i=0

n

ni ⋅3n−i
⋅5i

∑
i=0

n

ni ⋅3n−i
⋅5i

⋅−1i

x n = 2⋅∑
i=0

⌊n /2 ⌋

 n
2 i ⋅3n−2 i⋅5i  ∑

i=1

⌈n /2 ⌉

 n
2 i−1⋅3n1−2 i⋅52 i−1−52 i−1

x n = 2⋅∑
i=0

⌊n /2 ⌋

 n
2 i ⋅3n−2 i⋅5i  0

x n = 2 an

x n =∑
i=0

n

ni ⋅3n−i 5i
 5i

⋅−1i 

Binomial theorem

Factorise

Split sum into even and odd parts

Simplify

From original binomial expansion 
noting that odd terms have a root 5 
factor and even terms don't



  

Example – Google code jam

2 [3 5
1 3

n

]1,1

−1 mod 1000

 Therefore we compute the nth power of the 
matrix, double the top left-hand item and 
subtract one. (All these operation are computed 
mod 1000).



  

Example – SACO

 How many ways are there to tile a 1xN corridor 
with 1x2 and 1x3 tiles?
(Give the answer mod 1 000 000 009)
 SACO 2nd round 2008, Question 4 (modified)



  

Example – SACO

 You all solved it with N <= 1 000 000
 But, just like the Fibonacci numbers, this can be 

solved with matrices for N <= 101000 000

 This same approach can be used to solve the 
problems jelly and tile from the 2009 on-line 
contest in logarithmic time.



  

Questions

 Any Questions?
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