

Linear Recurrences

Linear Recurrences

 A recurrence relation is a function that defines a
sequence recursively.
 F

n
 = F

n-1
 + F

n-2
(Fibonacci recurrence)

 x
n
 = r.x

n-1
(1 – x

n-1
) (Logistic map)

 A linear recurrence simply consists of a linear
combination of some number of preceding
terms.


T n = a⋅v where a is a vector of coefficients

and v is a vector such that vi = T n−k for some k ∈ ℕ
*

Linear Recurrences

 How do we solve linear recurrences efficiently?

 For example take the Fibonacci numbers:
 F

n
 = F

n-1
 + F

n-2

 F
1
 = F

2
 = 1

 How do we compute F
1000 000 000

?

 DP? Too slow.
 We can do much better using matrices.

Matrices

 What is a matrix?
 A matrix is simply a block of numbers that can be

added, subtracted and multiplied as if it were a
number in its own right.

 They come in different sizes; an m⨯n matrix has m
rows and n columns.

 If m = n, it is square matrix.
 A matrix with only 1 row is called a row vector and

one with only 1 column is called a column vector.

Matrices

 1 7
−3 1/2

−1 75 15
0 6 −57


6 −79

3/4 6
−3 37 


1 0 0 0
0 6 0 0
0 0 11 0
0 0 0 16



5 −4 8 17 2x2 square matrix

3x2 matrix 1x4 row vector

4x4 square matrix

2x3 matrix

Matrices

 The matrix analogue of zero is the zero matrix
and the analogue of one is the identity matrix.


0 0 0
0 0 0
0 0 0
0 0 0

 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


4x3 zero matrix 5x5 identity matrix

Matrices

 When adding or subtracting matrices you
simply add or subtract their individual terms.

 Matrix multiplication however is a bit trickier and
it forms the basis of this talk.

Matrix Multiplication

 Matrices may only be multiplied if the number of
columns in the first is equal to the number of
rows in the second. The result has the same
number rows as the first and the same number
of columns as the second.

m×n⋅n× p = m×p

Matrix Multiplication

 If two matrices are multiplied each element in
the resulting matrix is the dot product of the
corresponding row in the first matrix and the
corresponding column in the second matrix.

AB

Matrix Multiplication

 Matrix multiplication is not commutative, but it is
associative and it distributes over matrix
addition.

A B≠B A

A BC=ABC 

ABC=A BAC

ABC=A CBC

Matrix Multiplication

1 2 3
4 5 6

7
8
9= 1×72×83×9

4×75×86×9= 50
122


7
8
91 2 3

4 5 6 is undefined

1 2
3 43 2

1 0= 1×32×1 1×22×0
3×34×1 3×24×0= 5 2

13 6
3 2
1 01 2

3 4= 3×12×3 3×22×4
1×10×3 1×20×4= 9 14

1 2 

Matrix Multiplication
// O(n3) matrix multiplication algorithm
Matrix multiply(Matrix a, Matrix b) {

assert(a.columns == b.rows);

// c is initially filled with zeros
Matrix c(a.rows, b.columns);

for(int k = 0; k < a.columns; k ++) {

for(int i = 0; i < a.rows; i ++) {

for(int j = 0; j < b.columns; j ++) {

c[i][j] += a[i][k]*b[k][j];
}

}
}

return c;
}

Recurrences in terms of Matrices

 Write down the equation

 What information is used?

 What do we want and what will be used next
iteration?

Fn=F n−1Fn−2

Fn−1

Fn−2


 F n

Fn−1


Recurrences in terms of Matrices

 What matrix A do you need to multiply the first
column vector by to get the second one?

 F n

Fn−1
= AF n−1

Fn−2


 F n

F n−1
= a b

c d F n−1

F n−2
 F n=a⋅F n−1b⋅F n−2

F n−1=c⋅F n−1d⋅F n−2

Recurrences in terms of Matrices

 What matrix A do you need to multiply the first
column vector by to get the second one?

 Given

Fn=F n−1F n−2

 F n

Fn−1
= AF n−1

Fn−2


 F n

Fn−1
= 1 1

1 0F n−1

F n−2
 Fn=1⋅Fn−11⋅Fn−2

Fn−1=1⋅Fn−10⋅Fn−2

Recurrences in terms of Matrices

Because matrix multiplication is associative, if we
want the 6th Fibonacci number we can say

 Now we can simply power the matrix!

F6

F5
= 1 1

1 01 1
1 01 1

1 01 1
1 0F2

F1


F6

F5
= 1 1

1 0
4

F 2

F1


F6

F5
= 1 1

1 0
4

11

Recurrences in terms of Matrices

 This can be made very fast with the fast
exponentiation algorithm from Michel's lecture
modified to work for matrices.

 But you don't even have to write the code, just
implement a matrix class with an overloaded
multiplication operator and call
__gnu_cxx::power from <ext/numeric>.

 This runs in where n is the power and
m is the size of the matrix. Here m is a constant
so it runs in !

m3 log n

 log n

A more complicated example

 Find the nth term of the following series (given c):

 Phrase it as a recurrence:

 Used info

xn=∑
i=1

n

i⋅ci−1 = 12c3c2...ncn−1

xi = xi−1 i ci−1

 x i−1

ici−1

A more complicated example

 Equation

 But ic i -1 cannot be maintained, so an extra
variable must be added.

 x i

i1ci= 1 1
? ? x i−1

ici−1 xi = 1⋅xi−1 1⋅i ci−1

i1ci = ?⋅xi−1?⋅i ci−1


x i

i1ci

ci = A
x i−1

ici−1

ci−1 

 x i

i1ci= A x i−1

ici−1

Added c i-1

A more complicated example

 Now solving is easy


x i

i1ci

ci = 
1 1 0
0 c c
0 0 c 

x i−1

ici−1

ci−1 


xn

n1cn

cn = 
1 1 0
0 c c
0 0 c 

n


0
1
1 

x i=1⋅xi−11⋅i ci−10⋅ci−1

i1ci
=0⋅x i−1c⋅i ci−1

c⋅ci−1

ci=0⋅x i−10⋅i ci−1c⋅ci−1

x0=0

01c0=1
c0=1

Notable Mentions

 If A is the adjacency matrix of a graph. Then
the element (i,j) of An is the number of distinct
paths of length n from i to j.

 The number of paths up to length n can be
found by summing the matrices from A0 to An.
The matrix geometric sum formula can be use
to compute this efficiently.

Sn = An1− I A−I −1 where I is the identity matrix

Example – Google code jam

 The question is simple: find the last 3 digits
before the decimal point of . For
 Google code jam, Round 1A, Question C

 For example, , so you
output 935.

35
n

n ∈ ℕ

35
5
= 3935.73982 ...

Example – Google code jam

 The answer is less simple.
 Doing floating point operations loses accuracy

so you get the wrong answer.
 We can only use integers in our algorithm.

Example – Google code jam

 If we represent as
(which is always possible), we can get the
following recurrence:

 Written as a matrix

35
n anbn5 ; a , b ∈ ℤ

an = 3an−15 bn−1

bn = an−13bn−1

an

bn
=3 5

1 3an−1

bn−1


Example – Google code jam

 If you need to turn a surd into an integer you
usually perform some operation with its
conjugate.

 The conjugate surd of is .35 3−5

Example – Google code jam

 The key observation is as follows.


 Because is less than 1, for positive n,
will also be less than 1.

 As we will show, x
n
 will always be an integer.

 Therefore , which is one more than
our desired answer.

let x n = 35
n
3−5

n

3−5 3−5
n

x n = ⌈35
n
⌉

Example – Google code jam

x n =∑
i=0

n

ni ⋅3n−i
⋅5i

∑
i=0

n

ni ⋅3n−i
⋅5i

⋅−1i

x n = 2⋅∑
i=0

⌊n /2 ⌋

 n
2 i ⋅3n−2 i⋅5i  ∑

i=1

⌈n /2 ⌉

 n
2 i−1⋅3n1−2 i⋅52 i−1−52 i−1

x n = 2⋅∑
i=0

⌊n /2 ⌋

 n
2 i ⋅3n−2 i⋅5i  0

x n = 2 an

x n =∑
i=0

n

ni ⋅3n−i 5i
 5i

⋅−1i 

Binomial theorem

Factorise

Split sum into even and odd parts

Simplify

From original binomial expansion
noting that odd terms have a root 5
factor and even terms don't

Example – Google code jam

2 [3 5
1 3

n

]1,1

−1 mod 1000

 Therefore we compute the nth power of the
matrix, double the top left-hand item and
subtract one. (All these operation are computed
mod 1000).

Example – SACO

 How many ways are there to tile a 1xN corridor
with 1x2 and 1x3 tiles?
(Give the answer mod 1 000 000 009)
 SACO 2nd round 2008, Question 4 (modified)

Example – SACO

 You all solved it with N <= 1 000 000
 But, just like the Fibonacci numbers, this can be

solved with matrices for N <= 101000 000

 This same approach can be used to solve the
problems jelly and tile from the 2009 on-line
contest in logarithmic time.

Questions

 Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

